
AIAA-2000-4154

Robust Inversion and Data Compression in Control

Allocation

A. Scottedward Hodel 1 2

Abstract

We present an off-line computational method for

control allocation design. The control allocation

function 5 = F(z)r = 5o(z) mapping commanded
body-frame torques to actuator commands is im-

plicitly specified by trim condition 6o(z) and by a
robust pseudo-inverse problem

llI- G(z)F(z)ll < e(z)

where G(z) is a system Jacobian evaluated at op-

erating point z, _. is an estimate of z, and e(z) < 1
is a specified error tolerance. The allocation func-

tion F(z) = Y_i Oi(z)Fi is computed using a heuris-
tic technique for selecting wavelet basis functions

W and a constrained least-squares criterion for se-

lecting the allocation matrices Fi. The method is

applied to entry trajectory control allocation for a

reusable launch vehicle (X-33).

torques commanded by the attitude control system

and let _. be an estimate of vehicle operating condi-

tions z. The control allocation problem is to design

a control allocation law 5c(r:, re) specifying actua-

tor commands 5e such that vehicle body torques

f_(z, 5e(z, rc)) match the commanded torques rc to
within a specified tolerance.

We present an off-line computational approach
for a gain scheduled linear affine control allocation

law 5c(Z, re) = F(z)re + 6o(z) where 6o(z) is a trim

function selected such that f_(50(z), z) = 0 and

rLw

F(=) (1.1)
i---- 1

is a gain scheduled control allocation matrix com-
nu_

puted from basis (wavelet) functions _ = (0i}i=1
and their corresponding weighting matrices .%- =

nua
{Fi},=l.

1. Introduction

We consider control allocation design for a

reusable launch vehicle (see Figure 1). The problem
is described as follows. Let 5 E IRm be a vector of

actuator conditions (aerosurface positions, engine
thrust vectoring, etc.) and let z E IR n be a vector

of vehicle operating conditions (angle of attack o,
mach number M, etc.) such that the the controlled

vehicle torques

r=[ rz r_ rz ] r

r may be described as r = f,(& z) for some func-

tion f_. Let re be a vector of controlled vehicle
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2. Control Allocation Design

Let _ be a region of operating points (z E _)
and define

a(z) : z

Ideally, the control allocation matrix F(z) is se-

lected to be a pseudo-inverse of G(z),

G(z)F(z) = I.

However, lack of precise measurements of operat-
ing conditions z and actuator saturation issues can

prevent achievement of this ideal condition.

The use of an estimate /. for gain scheduling re-

quires that we relax the above pseudo-inverse condi-
tion. Let e, (z) be a specified error tolerance defined
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on z E i_ and let Q = QT > 0 be a selected matrix

to define a quadratic r,orm I1-']i_ = ½_. Then
a revised control allocation performance condition

may be written as

It[ - G(z)F(:,)t ] < e¢(z) : ]1=7- ZlIQ _< <- (2. t)

We require e¢(z) < 1 since this condition guaran-

tees rrr_ > O, i.e., the resulting controlled vehicle

torques have "the correct sign." which is a neces-

sary condition for several attitude control strategies

([_], [a]).

Actuator saturation issues may be dealt with in

part by incorporating the constraint

IIWaF(_)W¢II < l,_. e f_ (2.2)

where Wa and W_ are weighting matrices selected

based on actuator saturation limits and anticipated

maximum torque command magnitudes, respec-

tively. Notice that equation (2.2) is a convex con-

straint on the linear-affine matrix function F(r_).

In the absence of constraints (2.1) and (2.2), the

ideal control allocation problem may" be relaxed to

a simple least-squares optimization

rain [ [ Ill - G(z)F(z + h)ll" dhdz
a.-Eo Ja Ilhlle <_,,

(2.3)

The use of constraints (2.1) and (2.2) yields a con-

vex programming problem over z, :,.

VCe propose a candidate (off-line) solution pro-

cedure that iteratively selects a set of basis wavelet

functions if" and a corresponding set of weighting

matrices bv. Our candidate procedure assumes that

the optimization (2.3) subject to constraints (2.1)
and (2.2) is feasible; that is, there exist _, .T that

satisfy" the constraint conditions. The procedure is
as follows.

Algorithm 2.1 Control allocation design proce-
dure.

Inputs Target error tolerance function e_(z), sys-

tem Jacobians G(z), rneasurement uncer-
tainty parameters Q = QT >_ 0 and e: > O.

Outputs Wavelet set k0 and a corresponding set of

weighting coefficient matrices f to specify" the
allocation fimction F(z) per equation (1.1).

1. k:=-I

k:=k+l

if k = 0 then select an initial set of can-

didate wavelets _I'o.

else Update tI, k__ to obtain a new set of

candidate wavelets _k.

end if

Compute a set of matrices .T_ corre-

sponding to vo_ satisfying the minimiza-

tion (2.3).

(f) Define Fk(z) from equation (1.1) for ¢i E
_I,k, F_ E _rk

3. until Fk satisfies constraints (2.1) and (2.2).

2. do

(a)

(by

(c)

(d)

(e)

Remark 2.1 Let

ek = maxlll- a(z)F(z')ll- e.(z)

: z,_. _ fl, IIz - _-IIQ-< e=

The wavelet sets _k should be selected such that

the sequence ek is monotone decreasing. In princi-

ple, one may select the set of wavelets _ so that

they provide increased resolution at values of z E
where the constraint (2.1) is violated by Fk-](z)

corresponding to _a-], )vk-1. By consequence, the

updated wavelets provide additional degrees of free-

dom to the unconstrained optimization (2.3) so that

the computed values br_ yield a _unction F(z) that
is "nearer" to a feasible solution to the constrained

optimization.

3. Computational approach

We now consider Algorithm 2.1 in further detail.

Since the function f_ (z, 5) is often available only in

sampled form through, e.g., wind tmmel data, we
select a set of N operating points Z = {zi}N_ E f2

in the operating region 12. Associate with Z the

set of Jacobians L7 = {G, = G(z,),zi _ Z}. With

the function G(z) thus sampled, given a set of nu,

wavelets • {_)i _= },=_, the unconstrained control
allocation problem (2.3) becomes a matrix-valued

(dense) least squares problem of the form

rain 11.4-V- BII
X
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where

I ]X = " and B =

resolution this reduces not only the co[tram dimen-

sion of .4 hut also its row dimension, and allows

the incorporation of the norm constrait,t (see equa-

tion (2.1)) without undue increase of computational

complexity.

and each block-row .4 w of A is of the form

[ Ot(zj)Gi ... ¢=_(zj)G, ] (3.1)

where Ilzj - zil}Q 5_ ez, which may be solved read-
ily through a QR-factorization [I]. Further, if the

dimension of the minimization is not too large, re-

cently developed convex programming techniques

[3], [9] allow the norm constraint

Remark 3.1 Notice that Step 2b above does not

directly enforce the constraints (2.1) and (2.2), but
rather induces a trade-off between them in the com-

putation. This is done to ensure feasibility of the

posed convex optimization problem. Algorithm be-

havior may be tuned as needed by adjustment of

selected coefficients cl,c,, or by adding other con-

vex constraints, e.g., g > 0, as needed.

IIr-G(z_)F(Z,)II < e_(z)

: z_,5, e Z, II_-z_ll < q

to be directly included in Algorithm 2.1 step 2e.

Should the dimension of the minimization (3.1) be

too large for practical direct application of convex

programming techniques, one may employ an iter-

ative algorithm to update individually the matrix

values Fi E .Tk, holding the other unknowns fixed.

More precisely, we may replace step 2e of Algorithm

2.1 with the following procedure.

Algorithm 3.1 Tune weighting matrices

1. Compute .Tk from the unconstrained least

squares minimization (3.1).

2. for each wavelet g4 _) E _k

(a) Identify sample points zj Efl contained

in the support of O!k)

(b) Select weights ct, c2 > 0 and update the

weighting matrix Fi{k} E .Tk to solve

min cl9 + c.2t

subject to Ill - G(zj)F(ij)II

< e.(z) + g

3. end for

Sint:e the waveh,ts W, E @ are assumed to be

of finite support, for wavelets of higher degrees of

3.1. Wavelet decomposition
Formal development of a wavelet decomposition

of a general function F(z) [7] involves wavelet nor-
malization and the definition of a multidimensional

filter bank. Because the function F(z) is only im-

plicitly defined by the error criteria (2.1) and (2.3),

the structure of the control allocation problem does

not readily allow exploitation of wavelet properties

of (bi-)orthogonality, etc., nor does does it admit di-

rect application of a subset selection algorithm [2].

Reeves' Backward Greedy Algorithm [4] may be ap-

plied to the unconstrained problem (3.1), but this

approach does not make use of the finite-support

property of the set of wavelets _, nor does it read-

ily admit inclusion of the norm constraint (2.1) re-

stricted to the set of operating points Z.

For our purposes, it suffices to develop a heuris-

tic algorithm to identify a small set of wavelet ba-
t2tasis functions {Oi}i=z such that the error tolerance

(2.1) can be achieved. For clarity in exposition, we

shall use two-dimensional wavelets tO(x,y) where

x [ = Fz is vector drawn from a 2-D hyper-a

y J
plane in IRn. (Extension of our technique to higher

dimensions is not difficult, but rapidly increases the

computational complexity of the problem in terms

of both off-line computation time and required stor-

age in flight software.) We select the set of two-
dimensional wavelets

where i, j, k, g are integers,

_p{,a/(x ) a. _V(2-i(x - j)).
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and_,'(.)is themotherwaveletflmction(seeFigure
2)

e(x) : lit -_ IR:x --*
x+l ze[-l,0]
l-x x _ [0,1)
0 else

(Notice that we do not normalize I]o(iJkt)ll = 1;
justification for this will be seen Algorithm 3.2 in

the next subsection.) This class of wavelet ba-

sis flmctions may alternatively be interpreted as a

Sugeno-Takagi fuzzy logic (STFL) function or as a

first-order finite element solution; the use of convex

programming in STFL based dynamic control for a

fixed set of basis functions _ is addressed in [8]. We

will occasionally write F(x, y) rather than F(z).

3.2. Selection of wavelets

F n_Since the matrix values 5r = { i}i=l are easily
computed as the solution of a linear least-squares

problem, we consider now the selection of the set of

basis wavelet functions {t)i}in___I and its cardinality
nu,. We select the sequence of wavelet sets _I'k in

Algorithm 2.1 in an iterative process of subdividing

two-dimensional wavelets _(i/ke)(x, y) gith low in-

dex _lues i and k into "higher frequency" wavelets.

We shall make use of the following terms:

Definition 3.1 Consider an arbitrary wavelet

_(x,y) = _.m)(x, v).

1. The center of _ is the point

(_, _) = 02% e2 -k)

at which the wavelet has its maximum _:alue.

2. The x- axis children of _b(x, y) are the wave-
lets {_0(i*l,j',k,t) } with j'= 2j - 1,2j, 2j + 1.

Notice that the support of the wavelet 0 is the

union of the support of its x-axis children.

Similarly, the y-axis children of _(x,y) are

{g,(iO,k-_,t'l} with e' = 2g- 1,2g, 2g+ 1. The

support of the wavelet _ is the union of the

support of its y-axis children.

3. We say that a wavelet vatOke)(x,y) has uni-
form resolution in both axes if i = k. If t_ has

uniform resolution we say that its resolution
level is i.

4. Suppose that t7_ h_ks unif,)rn, resolution. Its

untfor'rn resolutzon chdd wavelets, or simply

.

its childrera, are the x-axis children of its

y-axis children (or, equi_,'alently, the y-axis

children of its x- axis children) whose centers

are contained in the region f_. Each wavelet

has up to nine children.

Consider a set of wavelets q*with uniform res-

olution. The wavelet tb with resolution level

i is redundant with _¢ if (1) _ E q, or (2) its
children are all redundant with _. Alterna-

tively, _ is redundant with • if the support of

can be written as the union of the supports
of wavelets in a set re' C _ whose resolution

level exceeds i.

We now present a refined version of Algorithm 2.1.

Consider the N sample points Z = {zj}_= 1 E ft.
Assume without loss of generality that 12 = [0, 1] x

[0, 1].

Algorithm 3.2 Control allocation design proce-
dure

1. k = 0; _0 is selected to be the 2p = 4 basis
wavelets with resolution level 0 centered at

the vertices of _,

=

= {_(o,o,o,o),¢(o,o,o,_),¢(o,l,o,o),

0(oa,0,1)}.

2. Compute a set of matrices _o corresponding

to _o satisfying the minimization (3.1).

3. Define Fo(z) from equation (1.1) for _bi e @o,

4. while Fk does not satisfy the constraint

II1- G(zi)F(?.i)ll < e_fz)

: z,,& EZ,

II_i - zifl < _:

(a) Compute the error surface

_(z,) = maxlll- G(z,)F(5)II

-e,(:,)

: z,,,5,_Z, llz,-&ll<¢:

and define e_(z,) = max{0,_,(z,)}.
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(b) Identifyawavelett_'EOkwithmaximal
imw.rproductwith theerrorsurfaceek.

(c) k:=k+l

(d) Construct Ok from qJk-l by replacing
with its children.

(e) Define Fk(z) from equation (I.I) for V)i E

o_, F_ E :G

5. end while

Remark 3.2 Notice that ek is nonnegative at all

zi E Z and is positive only at points zi E Z where

the norm constraint (2.1) is not met. (¢(i__t), ek} =
0 =_ the constraint (2.1) is met at all points zi in
the support of ¢(ijkt)

Remark 3.3 Since the wavelets VJ(ijkt) are not

normalized to have unit energy, the inner product

criterion in step 4b is biased toward subdividing

low-resolution wavelets. This heuristic process of

subdivision quickly increases the level of resolution

in those areas of gl where it is needed while using

low resolution levels where possible, reducing the
computational requirements of the final control al-

location flight code.

4. Design Example

We illustrate our design procedure in applica-

tion to the X-33 experimental technology vehicle

entry trajectory control allocation design. From

the X-a3 main engine cut off (MECO) to its tar-

get area energy management (TAEM) interface, the

x-a3 actuators include two pairs of elevons (left,

right; outboard, inboard) and two body flaps (left,

right). The left and right elevon pairs operate as
a unit so that there are four deflection commands

(left elevon, right elevon, left body flap, right body
flap), 6c E IR a. Due to details of the vehicle, the
trim deflection function for the .¥ - 33 is selected

6o(z) =

as

61eft elevon

6right elevon

61eft flap

dright flap

/,(:)

where 6, is a (constant) elevon bias position and
ft(z) is a scalar-valued flap pitch trim function.

(Roll and yaw torques resulting from 6o(:) are all

zero.) A set of eight reaction control system (RCS)

thrusters are also available for entry maneuvers; for

simplicity (and due to details of RCS thruster op-

eration) these are neglected in this study.

The control allocation is scheduled on the an-

gle of attack a and the Mach number 31, 3-DOF

simulations and dispersion (Monte Carlo) runs indi-

cate that the range of these values is a E [10 °, 45 °]

and M E [3, 10]. For the purposes of wavelet de-

composition these ranges were normalized to fl =

[0, 1] x [0, 1]. A set of 1024 operating points zj E f_

were selected by superimposing an evenly spaced

32 x 32 rectangular mesh on the above intervals. A

plot of condition tc(G(z)) of the dacobian G(z) from

the surface deflections 6 to body torques r at trim

conditions is shown in Figure 3. Based on the data

in Figure 3 and other analysis of achievable per-

formance, the target tolerance e,(z) was selected

as shown in Figure as shown in Figure 4 with val-
ues between 0.5 and 0.71. The initial thresholded

error surface el for n,,, = 4 is shown in Figure Fig-

ure 5. Two iterations later (k = 3) there are a

total of n,,, = 9 wavelets in _3 and the error sur-

face e_ is as shown in Figure 6; notice the decrease

in maximum error above threshold and in the por-

tion of f2 that meets the error criterion (2.1) (points

at which e3 = 0). The target tolerance ¢_(z) was
achieved after a total of four iterations with a to-

tal of n_,, = 14 wavelets in the database; a plot

of max_ V)J4) (z) for "(4/_j E ¢_4 is shown in Figure
7; peaks in the plot corregponff to the centers of

wavelet functions. (Use of least-squares optimiza-
tion without re-tuning individual weights as in Al-

gorithm 3.1 required n,,, = 53 wavelets to achieve

similar performance.)

The computed control ailocation function F(z)

was tested in open-loop simulation by command-

ing a sawtooth wave in roll. pitch, and yaw torques

(see Figures 8- 10). Torque command channels are

coupled, but have acceptable performance as shown

in the Figures. Aerosurface deflections (with ideal

pitch trim function d0(z)) are shown in Figure 11.

5. Conclusions

The design of control allocation for tail-less, lift-

ing body reusable lmmch w.qficles requires both to-
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bustness to measurement and modeling uncertainty

and a computationally feasible implementation. We

propose the off-line computation of a wavelet-based

decomposition of an implicitly specified control al-
location function

F(x) = _ _,(z)F, + &(z)
i

We select piecewise linear wavelets through an it-

erative subdivision process in order to meet a max-

imum error criterion. The matrix weights {Fi}

are computed through the solution of a linear least

squares problem. The method was applied to entry

trajectory control allocation for the X-33 technol-

ogy testbed and appears promising.
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Figure 3: Pointwise condition number of the de-

flection to body torque Jacobian matrix

G((_, M). Omitted values rapidly rise to a

condition number _ (G(a, M)) _ 160. Cor-

responding values of G show less than 1%

of yaw authority than that available in the

pitch and roll channels. Mean and standard

deviation of the condition number values

shown in the plot are both approximately
15.

Figure 5: Initial error thresholded by target tolerance
value
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Figure 6: Threshold error surface after two iterations

of wavelet subdivision.
Figure 4: Maximum error tolerance for control allo-

cation matrix computatioa
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Wavelet basis [09-Mar.2000 13:15:40]

Figure 7" max./Cj(z) for wavelet basis functions Cj selected for control allocation function F(z).

Roll Command/Roll Torque comparison [lO-Mar-2000 09:.53:12]
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Figure 8: Control alloc_tion test in si]ntalatiorL: roll cotnrlla:ld torque re arid body torque r.
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Yaw Command/Yaw Tccque comparison [lO-Mar-2000 09:53:11]
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Figttre 10: Control allocation test in simulation: yaw command torque rc and body torque 7-.
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Figure 11: Control allocation test in simulation: aerosurface deflections with ideal pitch trim _o(Z)
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